
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, July 2011, p. 3591–3593 Vol. 55, No. 7
0066-4804/11/$12.00 doi:10.1128/AAC.01701-10
Copyright © 2011, American Society for Microbiology. All Rights Reserved.

Effects of Fluconazole, Amphotericin B, and Caspofungin on
Candida albicans Biofilms under Conditions of Flow

and on Biofilm Dispersion�

Priya Uppuluri,1,2 Anand Srinivasan,3 Anand Ramasubramanian,2,3 and Jose L. Lopez-Ribot1,2*
Department of Biology,1 South Texas Center for Emerging Infectious Diseases,2 and Department of Biomedical Engineering,3

The University of Texas at San Antonio, San Antonio, Texas

Received 7 December 2010/Returned for modification 15 March 2011/Accepted 17 April 2011

We have examined the effect of continuous perfusion with antifungals on Candida albicans biofilms under
conditions of flow, closely mimicking physiological conditions encountered within patients. Biofilms displayed
high levels of resistance to fluconazole, and this antifungal exerted minor effects on dispersion levels. Ampho-
tericin B proved effective in reducing viability of cells within the biofilms and dispersion, but only at high
concentrations. Under flow conditions, caspofungin exhibited potent activity against biofilms and drastically
reduced biofilm dispersion.

Candida albicans is known to frequently colonize and de-
velop biofilms on medical implants. One of the most important
characteristics of biofilm cells is their high level of resistance to
antifungals (4, 7, 10, 17). Also, dispersion of cells from biofilms
may be responsible for device-associated candidemia and sub-
sequent disseminated invasive disease, the gravest forms of
candidiasis (3, 22). In the laboratory, C. albicans biofilms have
been formed both under static conditions and under flow con-
ditions (1, 4, 6, 9, 14, 17, 19–21, 23). However, the actual drug
susceptibility assays have invariably been carried out under
static conditions, in that preformed biofilms are incubated in a
limited amount of medium containing drugs, under nonshak-
ing conditions (1, 4, 17, 20–21). This does not replicate certain
scenarios in vivo, where the biofilms may continuously be in
contact with body fluids/blood containing inhibitory levels of
antifungal drugs. In addition, issues such as duration of action,
instability, and saturation may render a drug ineffective upon
prolonged static incubation periods (12). Here, to overcome
these limitations, we have used a novel in vitro model that
allows for the examination of the activity of antifungals against
C. albicans biofilms under dynamic conditions of flow and for
the assessment of the effect of antifungal drug treatment on
biofilm dispersion.

Biofilms of C. albicans strain SC5314 were developed using
a simple flow biofilm model system as previously described by
us (21). Briefly, biofilms are developed on silicon elastomer
strips for 16 h under a controlled flow of fresh yeast nitrogen
base (YNB) medium (1 ml/min). For drug susceptibility assays
under conditions of flow, biofilms were grown for 16 h in the
absence of drug, after which time antifungal agents were sim-
ply added to the medium reservoir and biofilms were subjected
to a continuous flow of medium containing a given concentra-
tion of a single antifungal agent over an additional 24-h period.

The different concentrations for the antifungal agents studied
were as follows: fluconazole (FLC), 1,024, 256, and 64 �g/ml;
amphotericin B (AMB), 32, 16, 1, and 0.25 �g/ml; and caspo-
fungin (CSP), 0.25, 0.125, 0.06, and 0.03 �g/ml. The biofilm
inhibitory concentrations were determined using a semiquan-
titative colorimetric method to measure metabolic activity in
cells within antifungal-treated biofilms compared to control
(untreated) biofilms grown in parallel (16, 17). Under these
conditions, biofilms were found to be completely resistant to all
concentrations of FLC, including the highest, 1,024 �g/ml,
despite being continuously exposed for 24 h to a constant flow
of medium containing fresh FLC. AMB had a more pro-
nounced effect on biofilm inhibition, and continuous exposure
to 4 �g/ml of AMB resulted in �50% inhibition of cells within
biofilms, while �80% inhibition was detected at 16 �g/ml of
AMB. However, these AMB concentrations are generally con-
sidered toxic (18). CSP displayed high levels of activity under
flow conditions against preformed biofilms, with sessile MIC50

and MIC80 (SMIC50 and SMIC80) values of 0.06 and 0.125
�g/ml, respectively, concentrations that are well within its ther-
apeutic range. Thus, for these three drugs, representative of
the three major classes of antifungal agents used in the clinics,
results are similar to those observed under static incubation
conditions. This is somewhat contrary to our initial expecta-
tions that continuous exposure of biofilms to fresh antifungal
drugs may perhaps lead to improved antibiofilm activity. In any
case, our observations indicate that biofilm resistance may not
be a result of limited drug diffusion into the biofilm or the
presence of quorum-sensing molecules in the biofilm (as these
molecules are likely to be washed out by the continuous flow)
or be related to limitations in the amount of the antifungal
drug (1, 11, 13, 15).

In addition, at various time points after the addition of
antifungal agents, cells released from the biofilms in the flow-
through medium were collected, counted, and plated to assess
the impact of antifungal drugs on biofilm dispersal and on the
viability of dispersed cells. FLC treatment had only a minor
effect on dispersion, even at 1,024 �g/ml, the highest concen-
tration tested (Fig. 1). However, approximately 50% of the
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cells dispersed from biofilms after 12 h of continuous exposure
to FLC (1,024 �g/ml) were nonviable, and by 24 h posttreat-
ment, the proportion of the dead cells within the dispersed
population increased to 66% (Table 1). At the highest concen-
tration tested (16 �g/ml), AMB decreased the rate of biofilm
dispersal by 70% within only 1 h of treatment, and by 6 h, an
almost complete abrogation of biofilm dispersal was observed
(Fig. 1B). Overall reductions in the numbers of cells released
from the biofilms of greater than 80% were also observed after
continuous perfusion for 6 to 24 h with AMB at concentrations
of 1 and 4 �g/ml, whereas AMB at 0.25 �g/ml resulted in only
minimal effects on biofilm dispersion. Treatment at all AMB
concentrations tested resulted in decreased cell viability of
dispersed cells (Table 1). Regarding CSP treatment, within
only 1 h of flow over C. albicans biofilms, treatment with CSP
at 0.25 �g/ml reduced biofilm dispersion by 80% and release of
cells from the biofilms was virtually abolished by 6 h posttreat-
ment (Fig. 1C). Notably, by 12 and 24 h after treatment with
the two highest CSP concentrations, the majority (�80%) of
dispersed cells were nonviable, reaching 98% killing after 24 h
at 0.25 �g/ml (Table 1). Thus, in addition to their effect on
preformed biofilms, we found that the antifungal drugs did
significantly impact the process of biofilm dispersion, also with
striking differences among the three agents tested.

Biofilms also serve as a reservoir from which protected cells
can detach and go on to establish infection at distal sites after
hematogenous dissemination. We have recently characterized
this “biofilm dispersal” phenomenon and described the dis-
persed cells to have several virulence traits, distinct from
planktonic cells (22). Whether the dispersed cells inherit prop-
erties of antifungal drug resistance from their multidrug-resis-
tant parent biofilms has not yet been investigated. Thus, we
next used a slightly modified CLSI protocol (5) to investigate
the in vitro activity of the three antifungal agents against cells
dispersed from untreated biofilms in comparison to age-
matched planktonic yeast cells grown in parallel under com-
parable conditions. We found the dispersed cells to be suscep-
tible to therapeutic levels of AMB and CSP with identical MIC
values compared to those of planktonic cells; however, dis-
persed cells were up to 8 times more resistant to FLC (MIC �
4 �g/ml) compared to their planktonic counterparts (MIC �
0.5 �g/ml).

FIG. 1. Effect of FLC, AMB, and CSP treatment on the extent of
biofilm dispersion. Biofilms developed under flow conditions were
further treated under similar flow conditions with different concentra-
tions of FLC, AMB, or CSP. Cells dispersed from untreated biofilms
were enumerated at 16 h, and the dispersed cells from biofilms con-
tinuously perfused with FLC (A), AMB (B), and CSP (C) were also
counted at various time points after addition of the antifungal agent to
the top reservoir. Results are expressed as percentages, compared to
levels of dispersion from untreated biofilms formed in parallel (in the
absence of drug), which were considered 100%. Results are from a
single experiment conducted in duplicate for each condition; the ex-
periment was repeated with similar results.

TABLE 1. Viability of cells dispersed from biofilms during continuous antifungal drug treatment under flow conditionsa

Drug Concn (�g/ml)
Nonviable dispersed cells (%)

1 h 3 h 6 h 12 h 24 h

FLC 1,024 16.5 � 4.8 31.3 � 3.2 48.7 � 3.8 47.0 � 4.2 66.8 � 2.3
256 9.5 � 6.2 16.2 � 2.6 26.5 � 2.7 27.3 � 4.9 37.5 � 2.9
64 5.5 � 2.2 11.6 � 1.4 15 � 5.6 16.9 � 4 14.5 � 7.7

AMB 16 13.8 � 3.9 15.7 � 0.0 34.5 � 0.7 50 � 14.1 64.2 � 6
4 0.0 � 0.0 11.8 � 3.8 14.2 � 8.0 46.6 � 0.0 63.4 � 10.3
1 0.0 � 0.0 0.0 � 0.0 3.8 � 0.0 44.0 � 0.0 38.0 � 8.9
0.25 10.9 � 4.6 9.0 � 1.4 6.1 � 1.2 46.1 � 8.8 40.8 � 6.5

CSP 0.25 23.6 � 1.8 68.5 � 4.0 74.5 � 7.7 92.2 � 0.3 98.2 � 0.1
0.125 1.3 � 1.8 51.7 � 2.4 40.0 � 4.0 81.2 � 1.7 81.4 � 1.9
0.06 6.6 � 0.0 2.6 � 3.7 22.2 � 4.7 34.3 � 4.4 46.7 � 2.3
0.03 2.0 � 1.0 1.6 � 2.3 3.8 � 5.3 11.4 � 7.7 17.4 � 2.2

a Results are percentages of nonviable cells and are expressed as averages and standard deviations for a single experiment conducted in duplicate. The experiments
were repeated with similar results.

3592 UPPULURI ET AL. ANTIMICROB. AGENTS CHEMOTHER.



Overall, our results suggest that cells within biofilms display
high levels of resistance to most antifungal agents, even when
these are continuously perfused over the biofilm for an ex-
panded period of time. However, these antifungal treatments
are able to ameliorate, to some extent, the dispersion of cells
from biofilms. In particular, and supporting previous data ac-
quired using static incubation models (2, 8, 18, 21), these re-
sults indicate a potent activity of CSP against C. albicans bio-
films under dynamic conditions of flow, as well as against
biofilm dispersion. As these conditions more closely mimic
those encountered within the patient, CSP (and perhaps other
echinocandin agents) should prove useful in the treatment of
biofilm-associated candidiasis and in the prevention of biofilm
dispersion, thereby decreasing dissemination to distal sites and
subsequent establishment of invasive disease.
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